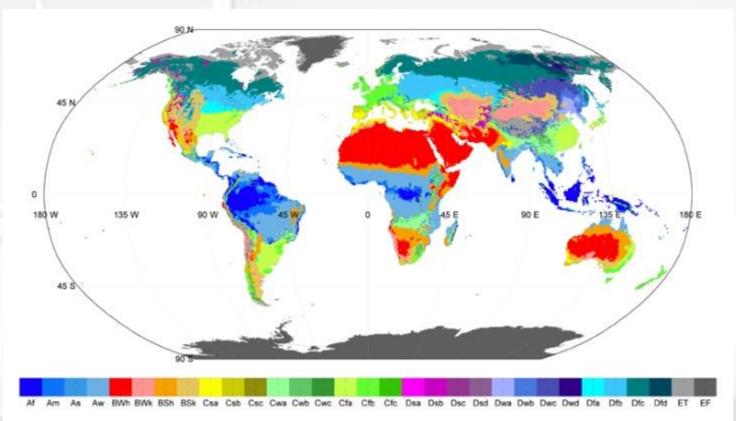

Smarter Weather Monitoring for your Wind Farm through Weather and Climate Analysis

Marty McKewon
Chief Meteorologist, Indji Systems
AWEA O&M 2017 San Diego


The Global Growth of Wind

The Global Growth of Wind

Koppen Climate Classification System

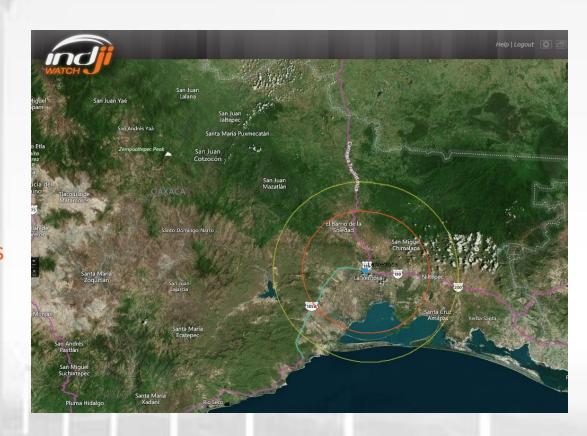
Standard Wind Farm Monitoring

- Rings to identify areas of concern
- Standard settings
- Based on ???

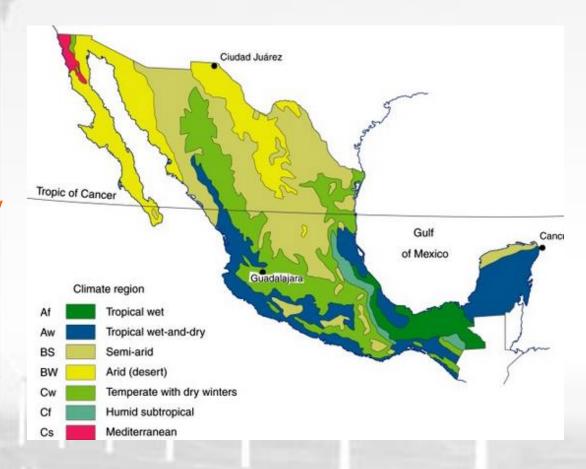
How Fast do Storms Move?

- 0 to 60 ??
- Depends on many factors
- Terrain and Maritime influences too

- Isthmus of Tehuantepec
- 27 2.5 MW turbines
- Power purchased by Walmart

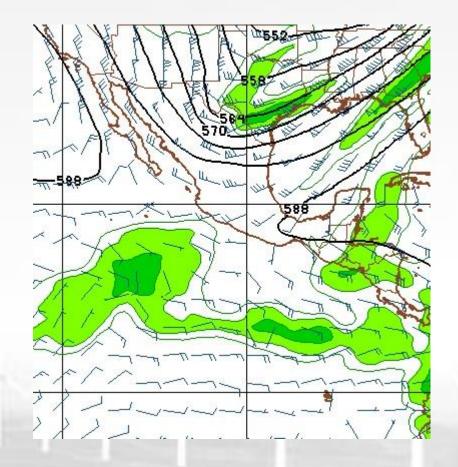


- Weather was creating challenges for productivity
- Frequent lightning alerts that caused tower stand-downs
- Alerts often did not lead to threatening weather at the wind farm


- Client approached us
- Discovery and understanding phase
- Decision to investigate options for more targeted lightning alerts based on ring size

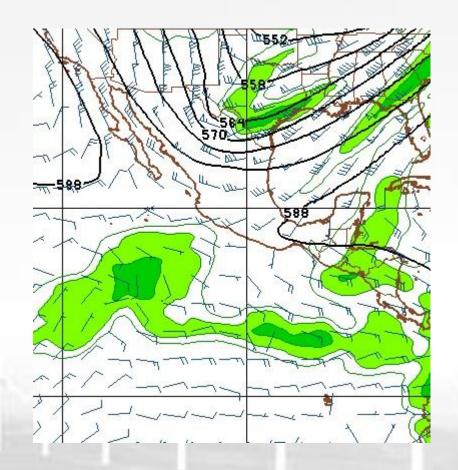
The climate of Oaxaca

- Officially classified as a Savana Climate
 - Warm to hot temperatures every month
 - Pronounced Dry Season
 - Except in mountain ranges


Official Climate Data

Climate data for Oaxaca (1951–2010) [hid													
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Record high °C (°F)	38.5 (101.3)	38.0 (100.4)	40.5 (104.9)	41.6 (106.9)	43.0 (109.4)	40.0 (104)	36.7 (98.1)	36.5 (97.7)	36.0 (96.8)	35.5 (95.9)	35.0 (95)	34.0 (93.2)	43.0 (109.4)
Average high °C (°F)	27.6 (81.7)	29.5 (85.1)	31.9 (89.4)	33.2 (91.8)	32.4 (90.3)	29.4 (84.9)	28.5 (83.3)	28.5 (83.3)	27.8 (82)	27.9 (82.2)	27.7 (81.9)	27.0 (80.6)	29.3 (84.7)
Daily mean °C (°F)	18.3 (64.9)	19.8 (67.6)	22.3 (72.1)	24.0 (75.2)	24.1 (75.4)	22.8 (73)	21.9 (71.4)	21.8 (71.2)	21.5 (70.7)	20.8 (69.4)	19.4 (66.9)	18.3 (64.9)	21.3 (70.3)
Average low °C (°F)	9.0 (48.2)	10.2 (50.4)	12.7 (54.9)	14.8 (58.6)	15.9 (60.6)	16.1 (61)	15.2 (59.4)	15.0 (59)	15.3 (59.5)	13.7 (56.7)	11.1 (52)	9.6 (49.3)	13.2 (55.8)
Record low °C (°F)	0.5 (32.9)	1.0 (33.8)	3.0 (37.4)	4.0 (39.2)	9.0 (48.2)	9.0 (48.2)	9.0 (48.2)	9.0 (48.2)	9.0 (48.2)	4.5 (40.1)	1.0 (33.8)	0.0 (32)	0.0 (32)
Precipitation mm (inches)	3.3 (0.13)	5.1 (0.201)	13.1 (0.516)	39.3 (1.547)	86.4 (3.402)	170.4 (6.709)	116.3 (4.579)	111.6 (4.394)	135.6 (5.339)	52.3 (2.059)	9.3 (0.366)	3.3 (0.13)	746.0 (29.37)
Avg. precipitation days (≥ 0.1 mm)	0.9	1.3	2.3	5.7	10.7	17.2	16.9	16.3	17.1	7.8	2.3	1.0	99.5
% humidity	47	42	41	42	46	57	57	57	60	56	52	48	50
		1	Source #	t1: Servicio I	/leteorológico	Nacional ⁽¹⁰	0[[11]						
			Source #2	2: Colegio de	Postgradua	dos (humidi	ty)[12]						

Seasonal Weather Breakdown


- Nov. February
 - Very Dry
 - High Pressure
 Dome
 - Stable
 - West or Northwest winds aloft
 - Can have an influence, cooler and drier

Seasonal Weather Breakdown

- March May
 - Hottest months
 - Transition to Spring
 - Humidity increase
 - Daytime heating storms
 - Most likely inland
 - Higher elevations

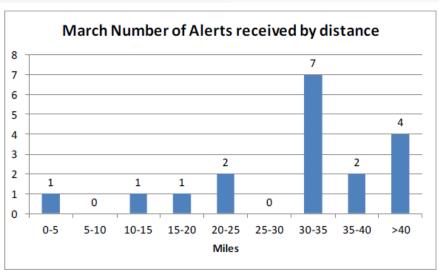
Seasonal Weather Breakdown

- June-October
 - Very wet
 - Especially June to Sept.
 - Dominated by easterly winds aloft, tropical season
 - Storms that are offshore are prone to stay there, especially Aug-Sept.
 - Ocean Breeze can trigger inland storms

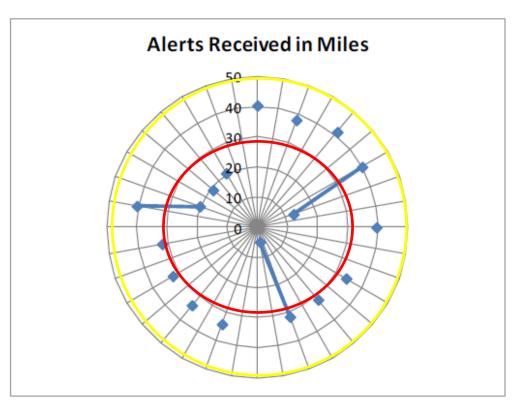
Oaxaca Weather Challenges

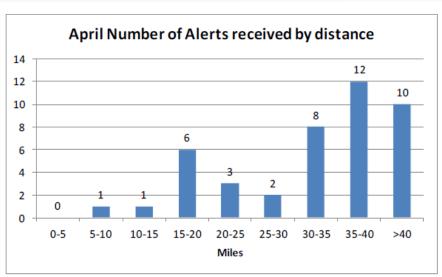
- Predicting storm development location is a challenge
 - No fronts!
 - Tropical waves are tough to spot for lay person (explain)
 - Mountains are common location

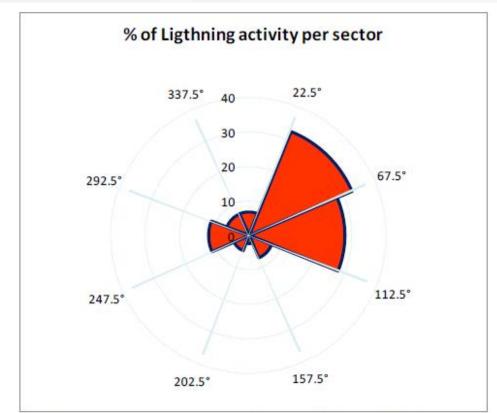
- Weather and climate analysis results
- Conclusions



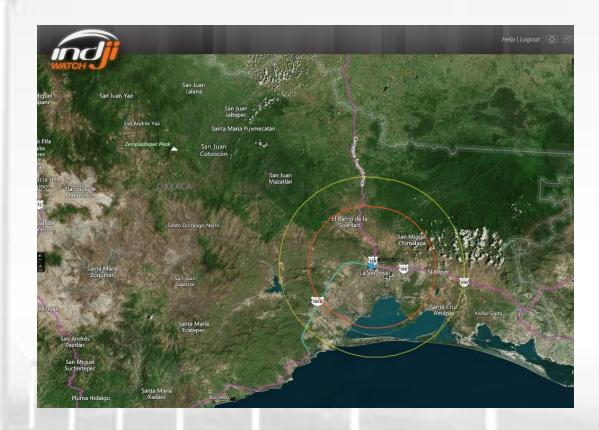
- Client conducted internal analysis of potential update to ring size
- Studied a two-month period, March and April 2015



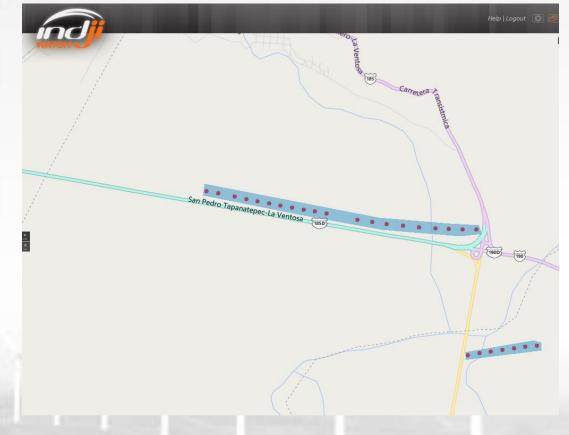

GP.01. Number of watching/warning alerts received group by distance in miles from the center of the site. (La Mata – La Ventosa)


GP.02. Watching/Warning alerts graphic by rings of miles

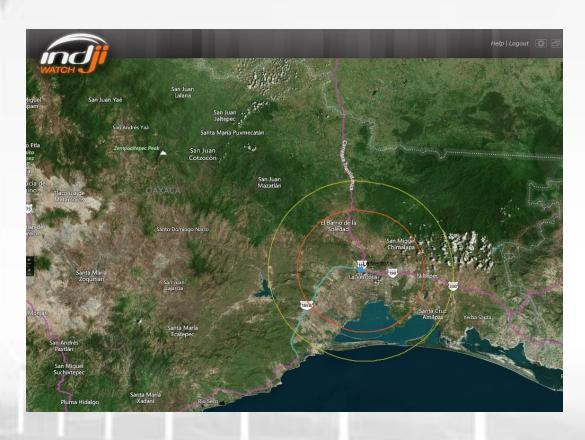
GP.06. Number of watching/warning alerts received group by distance in miles from the center of the site. (La Mata – La Ventosa)



GP.08 Percentage of occurrence of the lightning alerts by sector


- Client study results
- Conclusions

- Monitoring method is also important
- What is the foot-print or aerial coverage of your farm?



Weather and Climate Analysis

- Rings now set at 20 and 30
- Level of safety has been maintained
- Productivity has increased
- Significant savings on cranes and mobilization costs
- More turbine uptime, more power generation

Author: Marty McKewon

Q&A

Marty McKewon
Chief Meteorologist, Indji Systems

